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The role of rigidity constraints in the rheology
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This paper investigates a class of bead-rod and bead—spring models which have been
proposed to describe the dynamics of an isolated macromolecule in a flowing solution.
Hassager (1974a) has pointed out a surprising result in regard to these models: the
statistical conformation of a molecule (and hence its influence on the flow) apparently
depends upon whether a very stiff-springed model structure or a rigid one is used.
This paradox is examined and resolved. It is shown that a unique answer is obtained
by regarding the system as the classical limit of a quantum-mechanical one. The
extent of the quantum influence can be characterized by a dimensionless group @.
For a ‘hot’ or ‘large’ system (for which @ - 0) the classical (stiff spring) results are
recovered. The effects of the parameter @ on the size of the molecules and the rheology
of the solution are calculated in detail for a simple model, and the gross features are
identified for a more realistic Rouse chain model, each in both weak and strong flows.

A final section considers weak, rapidly varying flows. It is shown that, within the
context of classical (non-quantum) physics, for sufficiently rapid changes any model
structure will tend to move with the applied flow, and therefore exert no stresses on
the fluid. This explains the theoretical observation of Fixman & Evans (1976) that,
in regard to the particle stress, the limits of rigidity and infinitely high frequency do
not commute.

1. Introduction

Polymer solutions, and polymeric materials generally, frequently display complex,
non-Newtonian flow behaviour. In the case of polymer melts, an understanding of
the rheology has direct industrial application; for dilute solutions the flow properties
can be used to infer the gross features of the structure of the dissolved molecule, and
are also of interest in their own right in that the solution affords an example of a non-
Newtonian material whose constitutive equation can be predicted from a knowledge
of the constituent parts of the solution, at least in so far as such molecular information
is available. A linear polymer molecule may be envisioned as a long chain of say 10
rigid repeating units (monomers) each of length about 8 A hinged to their neighbours
at the backbone carbon atoms at their ends. The hinges, while providing some con-
straining potentials to resist relative rotational motions, permit considerable flexibility
in the structure, which therefore changes in response to both random Brownian
motions and coherent forces exerted by the solvent molecules. Since these solvent
molecules are very much smaller than the polymer, the solvent may be regarded as a
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252 J. M. Rallison

continuum, but with an appropriate allowance for the thermal fluctuations. (The fact
that the solvent molecules are comparable in size with the monomers means that the
solvent—solute interactions involved in these thermal motions are complex. Their
detailed calculation remains an open question.) With this simplification, the problem
of determining the constitutive relation for the solution regarded as a continuum
follows in essentially the same way as for suspensions of rigid particles (see e.g.
Batchelor 1970), but with the additional theoretical difficulty of finding a suitable,
tractable model of the molecule that will incorporate its important physical features.

The simplest macromolecular model, the dumb-bell model, was introduced by Kuhn
in 1934. The solvent—-molecule interaction is imagined to be concentrated in two point
friction centres (called ‘beads’), joined by a Hookean spring connector (assumed
to exert no hydrodynamic force, and of zero natural length). The elasticity of the con-
nector (the ‘entropic spring’) is chosen to model the random thermodynamic motions
of the backbone carbon atoms of the real chain which endeavour to keep the chain in
its most probable, spherically symmetric configuration.

This model was later improved by Rouse (1953) and Zimm (1956) who incorporated
more of the known structure by means of a chain of (¥ + 1) beads joined by N Hookean
springs. This structure has become known as the Rouse-Zimm chain. In Rouse’s
version the beads are hydrodynamically independent (this simplification permits
an analytic solution) while, in Zimm’s treatment, Oseen interactions are included. In
either case, however, the linearity of the springs means that when the model is placed
in a sufficiently strong flow, the solvent forces on it will dominate the restoring force and
8o the extension will grow without bound. This defect can be remedied by replacing
the springs with rods (a ‘ bead-rod * model). This idea seems first to have been suggested
by Kramers (1944), in a paper which attracted little attention, and more recently has
been exploited by Hassager (1974 ) in discussing rheological properties.

Polymer models are used to estimate the average dimensions of macromolecules for
the interpretation of both light-scattering experiments and also sedimentation data.
The standard results for equilibrium properties are given by Flory (1969), who again
uses a bead-rod model, though as we note below his results differ from those of
Kramers.

More recently, all manner of combinations of beads, springs and rods have been
used in ever more sophisticated models (see the review article of Bird ef al. 1977). In
addition a difficulty has arisen. Hassager (1974a) has pointed out that, in models
where Brownian effects are present, there is apparently a quantitative difference
between structural features involving rigid constraints (rods) and the limiting process
in which flexible constraints (springs of non-zero equilibrium length) are frozen. This
discrepancy manifests itself in calculations both of the average size of the macro-
molecules, and of their rheological influence. In § 2 we demonstrate this difference
explicitly. It is of some theoretical importance, since conceptually there is no difference
between the two cases, at any rate from a classical mechanical point of view, and the
absence of agreement casts doubt on both sets of results.

In §3 we demonstrate that the problem has arisen from a failure to recognize the
importance of quantum mechanics when limits of rigidity are to be taken. The same
difficulty arises in calculating the specific heats of polyatomic molecules at low
temperatures. The expectation that ‘stiff’ and ‘rigid’ are equivalent may not be valid
in statistical mechanics, and quantum physics are required to resolve the problem.
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(a)

F1eureE 1. (a) Definition sketch for the trumb-bell. (b) Vectors defining the plane of the trumb-bell.
(¢) Euler angles defined by the orientation of the trumb-bell.

The rheological and geometrical influence of the quantum terms are evaluated for a
Rouse chain in equilibrium (§ 4) and flow, both weak and strong (§5). In order to
produce a tractable solution we shall make the Rouse approximation of ignoring
hydrodynamic interactions between the beads of any one macromolecule. Further the
assumption of diluteness means that inter-molecular interactions are to be ignored;
neither of these features is central to the physics of the paradox under discussion, and
each would unnecessarily obscure the issue.

A further difficulty for models with rigid components has been pointed out by
Fixman & Evans (1976), who consider stresses induced by weak but very high fre-
quency flows. They show that the limits of freezing degrees of freedom and of infinitely
high frequency do not commute. In §6 we demonstrate that this phenomenon is, in
fact, entirely distinct from the quantum-mechanical one previously described, and
advance a classical physical explanation for the difference between the two limiting
processes.

A summary of the principal conclusions of the paper is given in § 7.

2. Summary of previous work

We start by giving an example of the type of difficulty which arises. The simplest
is afforded by a Rouse chain with N = 2 (Hassager 1974a), i.e. with just two springs
of non-zero equilibrium length and three beads as shown in figure 1. We will call such
a particle a trumb-bell. The same term will be used when the springs are replaced by
rods. As usual, the springs are supposed freely hinged at r! so that no potential
hinders the free rotation of b2 relative to bl. We now consider a suspension of such
model particles in a viscous fluid, with no imposed flow. Then the effect of Brownian
agitations will be to cause the system to settle down to thermodynamic equilibrium.
The question arises as to the distribution p(8) of the included angle & for this equilibrium
state.

Now we may plainly factor out an irrelevant motion associated with the system
centre of mass, and also an overall rotation of the plane of the trumb-bell. With these
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simplifications there remain just three degrees of freedom: the lengths of the springs
and the included angle. In the case where the springs are frozen into rods, there is
just one degree of freedom left, . For a system in thermodynamic equilibrium we have
(Landau & Lifschitz 1959) that the phase space distribution f is Maxwell-Boltzmann,
le.

f(p,q) = const.exp[—e(p, q)/kT],

where the q’s are generalized co-ordinates for the system and the p’s are the conjugate
momenta. ¢ is the energy associated with the phase point p, q; 7' is the temperature,
and k Boltzmann’s constant. Further, since on the time scale of interest it is only
the distribution of the g that need concern us, the configuration space probability
distribution is given by

(@) = [, @)dp = const. [exp (~<(p, @)/KT) dp. (2.1)

Now it is straightforward to show that in the case of springs of arbitrary stiffness,

(2.1) gives for the trumb-bell
p(0) = const.sin 4. (2.2)

Whereas if the springs are considered rigid, so the momenta conjugate to their lengths

never appear, then
p(0) = const. (1 — 1 cos2)sinf. (2.3)

Equation (2.3) is derived on the assumption that the masses of all the beads are equal;
(2.2) is valid independently of such an assumption. Explicit derivations are given in
§§ 4.2 and 4.3. We see that the expressions are unequal. Equation (2.3) would appear
first to have been derived by Kramers (1944), and effectively the same result is used
by Kirkwood and co-workers (1948, 1967). More recently results of the same type
have been developed (Hassager 1974a, b; Curtiss, Bird & Hassager 1974). On the
other hand Flory (1969) in his work on polymer configurations has employed (2.2)
and its analogues; while Fixman & Kovac (1974, b) and Fixman & Evans (1976)
have calculated rheological properties on essentially the same basis. A comparative
analysis of these approaches is given in table 1.

We shall see in §§ 3 and 4 that (2.2)is valid for the trumb-bell in appropriate limiting
circumstances, but that in general a new form (4.14) is required. Equation (2.3) never
appears as a natural limit when a full quantum-mechanical analysis is performed for
the trumb-bell with quantized vibrations of the springs. It remains possible that (2.3)
might arise as the classical limit of a quantum system in which the degrees of freedom
corresponding to the rods were absent ab énitio, but only in so far as such an analysis
is itself a consistent application of quantum mechanics to the trumb-bell with rods.
This paper takes the view that it is not, because of the uncertainty in the momentum
of a rod given its length. The formal correctness of (2.3) is strongly supported by the
evidence of the numerical experiment of Gottlieb & Bird (1976), but their use of
classical rather than quantum dynamics in the formulation of the numerical equations
of course begs the question raised in this paragraph.
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3. Order of magnitude analysis

The substance of our explanation of the discrepancy will involve quantum mech-
anics, so before considering the detailed mathematics of the problem we give some
order of magnitude estimates of the physical parameters which appear.

Consider some degree of freedom for the system in the limit as the force which
constrains it become infinitely large (i.e. that degree of freedom disappears). It is
perhaps conceptually easiest to imagine a ‘spring’ of non-zero natural length in the
limit as it becomes a ‘rod’. Then there are two natural dimensionless parameters
associated with that degree of freedom: its rigidity; and its smallness on a scale
naturally associated with Planck’s constant #. Thus, if [ is a typical length, « a stiffness
(which becomes arbitrarily large), and ¢ a typical vibrational energy, then

a = (e/I2)} (3.1)

measures the dimensionless variation in the length of the spring, and «— 0 for a very
stiff spring.

A second dimensionless parameter appears, however, from the consideration of
quantum mechanics. Associated with the large (but finite) stiffness there will be a
natural frequency of oscillation v with v ~ (x/ml?)}, where m is a typical mass. It
follows that, if the corresponding quantized energy #iv is comparable to e, then
classical mechanics will be inappropriate. In other words, defining

B =tv/e, (3.2)

quantum mechanics become important when f 2 1.

It is clear that « and S are independent parameters characterizing the system and
we may therefore identify two limiting parameter regimes which are different, though
both are rigid in the sense a < 1.

(i) a1, Bz 1, therigid quantized regime.
(i) <€ 1, p<«1, therigidclassical regime.

It will be shown that the failure to distinguish between (i) and (ii) has been the source
of much of the confusion in the literature.

We consider first near-equilibrium states for which (by energy equipartition) ¢ may
be replaced by kT. Then if we take a value a = 1071 to define a ‘stiff’ system, (3.2)
gives f# = (10%/1) (kT /m)%. Substituting typical values does not provide any clear
indication as to which of (i) or (i) to use, for if m and ! are taken as those appropriate
to a monomer unit then f is large, about 10, and so, hardly surprisingly, quantum
physics are important in handling the molecular vibrations (cf. spectral analysis). On
the other hand if, in the spirit of modelling, m, [ are representative of random coil of
say 10% bonds, then £ is small and (ii) can be used.

There are two circumstances in which our estimate of £ may be altered. The first
is that where a strong flow is present, then ¢ is no longer typically £7" but {EI* where
¢ is a friction constant for a bead, and ¥ is a measure of the shear rate. Second, this
estimate of the flow strength is itself altered when there are N (> 1) units in the chain
(for the flow, when strong, can extend the chain and so produce very large velocity
differences between its ends). These considerations lead us to define the following
dimensionless parameters.
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(i) A monomer Péclet number P = {EI?/2kT, the ratio of flow forces to thermal

vibrations for a single unit. (3.3)
(ii) A polymer Péclet number & = NP appropriate for extended states. (3.4)
(ii) A quantum number appropriate for near equilibria @ = fiv/kT. (3.5)
(iv) A quantum number appropriate for strong flows 2 = Q/NP. (3.6)

4. The equilibrium problem
4.1. General formulation

In this section we follow G6 & Scheraga (1969) and construct an apparatus to deal
with a general system in equilibrium, and derive the rigid quantized and rigid classical
limits. In § 5 the analysis for the rigid quantum limit is generalized to include the
non-equilibrium problem, and detailed solutions are given for the test case of a trumb-
bell.

4.1.1. Notation and conventions. Suppose we have a system characterized by
generalized co-ordinates ¢, ¢ = 1,..., N. We shall be concerned to ‘freeze’ the co-
ordinates g4, A = M + 1, ..., N to values of zero, say, while leaving the ¢*, & = 1,..., M
unconstrained. We adopt the convention that suffixes 4,5, ... are to run from 1 to N;
a,f,...from 1to M;and 4, B, ... from M + 1 to N. Where matrices are partitioned this
will be shown by their suffixes, e.g.

g, = ( wfu)
Y Jua } 9aB)’

We suppose that the system has kinetic and potential energies given by
T= %gqu.iq".; V= %V;jqiqf,

where g;; and V; are each functions of the variables ¢'. We then regard g,; as the
‘metric tensor’ for the co-ordinates, and define g% as its inverse, i.e.

9%, = k- (4.1)

Note that in general the partitioned form of g%/ does not consist of the inverses of the
partitioned form of g,;: the typical relationships between them are given by

9 = (Gap—9ua 928985
9*4 = = (Gay— 920 9cD9Dy) ' IyB 9B
Finally, the momenta conjugate to the ¢’s are defined by
P; = ¢;;4' = 0T/ og".

4.1.2. Classical thermodynamic equilibrium. In thermodynamic equilibrium, the
phase space distribution for the system is Maxwell-Boltzmann and thus the con-
figuration space distribution is

p(q) = const. f oxp [ — (¢"p by + Viy ')/ 2K T] dp. (4.2)
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On performing the integration this gives
p(q) = const.gtexp (— V/kT), where g = detg,;.

This result was derived by Kramers (1944) and also Kirkwood & Riseman (1948).
Note that since g? is in general a function of the ¢’s we do not have a simple Maxwellian
distribution exp (— V/kT). In addition we see that the stiffness of the constraining
potentials in no way affects the derivation.

If then for V; we take the particular formt
V., = (Kﬂ KA; ....... )

1,

with V4, V, 4, V4, all functions of the ¢= only, then, in the limit e > 0,
p— const. g% exp (— §¥,,,4°¢) T1 8g) (4.3)
4

with 8( ) a Dirac delta-function, and the superscript 0 indicating evaluation with all
g4 = 0. If however we had taken ¢ = 0 ab initio, then the g4 co-ordinates would never
have appeared, and we should have obtained

p = const.g'texp (— 1V, 59%¢#/kT) [1 6(¢+)
A
with g’ = detg,. (4.4)

Thus the two cases are the same, and no paradox arises, if and only if g° = g’ to
within a multiplicative constant. It is easy to show that for systems which are rigid
(after constraining) ¢° = g’ always (see the dumb-bell case in §4.2) and therefore
problems only arise for systems with internal degrees of freedom, and the trumb-bell
would seem the simplest such (§4.3). It is also easy to show via Lagrange’s equations
that the classical dynamics of the constrained system are the same as the limiting
form for the unconstrained system, so that it is solely the thermodynamic aspects
which are responsible for the difficulty. The problem here is exactly the same as
occurs for the specific heat calculation (see Sommerfeld 1956, §30), and its resolution,
as there, is via quantum mechanics.

4.1.3. Quantum thermodynamic equilibrium. We now suppose that the g4 co-
ordinates are quantized, while the ¢g* remain classical. Then for given p,, ¢* the set
of allowable energies is quantized, and can be labelled by a quantum number n
characteristic of the state, E,. Then the Maxwell-Boltzmann distribution gives
(Landau & Lifschitz 1959, § 28)

f(n; ., q*) = const.exp (- E,(p,,¢)/¥T), (4.5)
and (4.2) is replaced by
p(g) = const. El exp (— E,(p,, ¢*)/kT) dMp,. (4.6)
n=

Now, we assume that the energies are decomposable into two contributions, one arising
from the quantized degrees of freedom, and one from the classical.
Quantum contribution. Writing

1 The more general case in which V4 p also depends on the g% is considered in appendix A.
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where as given earlier, 9948 = (9 45— q4a 921 Ip5) S
we can write the Hamiltonian for the quantum part as
H = 49°45p pp+ e unqqP (4.7)

Furthermore, since the vibrations are (by definition) small, we may evaluate g24% at
g4 = 0, and at fixed values of the ¢, p, which therefore appear only as parameters
here. (Similarly, there is no reason in principle why we should not make our choice of
potential considerably more complex: 8,5 is the simplest available which demonstrates
the features we are interested in. Appendix A explores this point further.) Now
(4.7) is the Hamiltonian for a set of coupled harmonic oscillators, and so the associated
energy levels are (e.g. Fay 1965, § 12.5)

N
E= 3% (ng+d)v,, (4.8)
A=M+1

where the n 4, are integers and the normal mode frequencies v 4 satisfy

and are, in general, functions of the ¢ through g9 42,
Classical contribution. Here we effectively have all the ¢! = 0, so writing

gCa,@ = g;}|qA=0’ (4'10)

the kinetic energy from the classical degrees of freedom is $g¢+/p, p,.
Thus collecting together the two contributions, and substituting in (4.6), we have

p(q) = const. 3 |exp[— (39°*/p,ps+3V.p9°¢" + § (ng+3)%v,)/kT]dp,

ny=0
exp[—3iX v, /kT] 11 6(g4)
A A

I;I(l—exp(—ﬁvA/kT)) ’ (4.11)

= const. g't e V/kT

where ¢’ is as defined in (4.4).
On comparing (4.4) and (4.11) we see that the effect of including the quantum
energies for the ‘frozen’ degrees of freedom is to introduce a new factor

exp (— %ﬁzj; VA/kT)/l} (1—exp (—#v4/kT))

into p(q). If the v, are independent of the g%, this is just a constant and therefore
irrelevant. If, however, the quantum energies vary with the classical co-ordinates,
which is a common feature of systems with internal degrees of freedom, then this factor
must be included.

We note too that this resolves the discrepancy that arises from classical thermo-
dynamics in computing p(q) by the two routes. For now if we take the limit fiv , /k7T — 0,
so that the quantum states become more energetic and so classical, we find

p(q) = const.g'texp (— V/kT) I1 8(g4)/ I1 va,
and, using (4.9), this gives
p(q) = const. g® exp (— V/kT) 1 8(¢4),
4
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thereby recovering the classical result (4.3). Those treatments that have not included
the quantum behaviour of the constrained co-ordinates at all (Kramers 1944; Kirk-
wood & Riseman 1948; Curtiss et al. 1974, Bird et al. 1977) have thus failed to account
for the variation of the zero point energies of the suppressed degrees of freedom with
the retained classical co-ordinates. This is the heart of the problem, and explains the
danger of simply ignoring the constrained co-ordinates as if the system were classical:
such a simplification may be valid for the mechanics, and yet not for the statistical
mechanics of a system.

We now illustrate the analysis by evaluating these limits for two very simple
systems, the dumb-bell and trumb-bell.

4.2. The dumb-bell

We consider a dumb-bell with beads of equal mass (though the conclusions are wholly
unaltered for the unequal mass case). Axes are chosen at the centre of mass, and the
state of the system is described by spherical polars so that (¢, ¢2, ¢3) = (0, ¢, r). Then
setting aside the irrelevant centre of mass motion, the kinetic energy is

T = Im(r?0%+ r2sin2 02 + 72),

r 0 i 0
which gives gy =3m|0 7sind i 0} and ¢°= Im¥2sind,
0 0 1
and thus T = 3 r o and ¢ = im%*?2sinf = const. x ¢°.
= 2" 0 rsind 4

In other words, for this system there is no difference in the equilibrium configuration
before and after the freezing of the spring. Hence, results (Giesekus 1956; Prager 1957)
for the rheology of a rigid dumb-bell suspension are consistent with those for the
stiff-spring dumb-bell. The crucial degeneracy associated with the dumb-bell is that
after freezing no internal degree of freedom remains.

4.3. The trumb-bell

Again, taking beads of equal mass, and setting aside the motion of the centre of mass,
we are left with a system of 6 degrees of freedom. This can be dealt with by using
spherical polars for each of the connectors; but, following Hassager (1974a), we can
simplify these by factoring out an overall rotation of the plane of the trumb-bell so
that only 3 co-ordinates are required (¢, ¢2, ¢®) = (&, b, b?). Then we may write down
the kinetic energy for the system, and after some straightforward manipulations can

show that g’ = m(1—1cos20)tsin, (4.12)
2 cos !
. Q4B _ 1
om0, s

Thus, v, = v(2—cos )}, v, = v(2+ cos §) where v is a constant. So defining @ = #v/kT
asin (3.5), we have finally that
exp{—@Q[(2— cos0)} + (24 cos 0)1]}
{1—exp[—2Q(2—cos6)t]}{1 —exp [ — 2Q(2+ cos )]}’
(4.14)

p(6) = const. sin 6(1 —  cos2 )t
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Hassager (19744) resutt

@ <1 (classical)

pe(8)/sin 0

¢ n/2 m

Ficure 2. Equilibrium distributions p,(#) /sin @ for the included angle
of a trumb-bell normalized to unity at = 0.

In the classical rigid limit @ — 0 this gives p ~ const. sin 6(1 + 0(Q?)), while in the high
quantum limit § — oo,

p ~ const. x sin §(1 — } cos26)} x exp { — Q[(2 — cos §)} + (2 + cos 0)3]}.

(This latter result is not wholly consistent however, in that when @ becomes sufficiently
large it is no longer valid to regard € as a classical co-ordinate, and indeed at sufficiently
low T (i.e. @ - c0), the overall rotation of the system is also quantized.) For purposes
of comparison, it is convenient to set aside the sin § term which merely arises from the
spherical polar angular integration and concentrate on the remaining factor. When
the @ - oo approximation is sensible, then, it is clear that p/siné is non-zero only
near & = 0, 77 (i.e. when the trumb-bell is stretched out or folded back on itself), and,
for all @, the effect of including the quantum energies is to enhance the tendency for
the system to be in one of these states rather than at some intermediate angle. If the
variations in zero-point energies are not included (Hassager 1974a) then we obtain
instead of (4.14)
p(f) = const.sinH(1 — 1 cos? 6)}

for which the § = 1 state is preferred to 6 = 0, 7r. The various distributions are shown

graphically in figure 2 (where, for convenience of display, the multiplying constants

have been chosen to make lim p(#)/sin# = 1 rather than by normalizing p so that
60

foﬂp(ﬁ)dﬁ —1).
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4.4. The Rouse chain

The complexity of the result (4.14) for the trumb-bell suggests that analogous results
for general N will be exceedingly complex. Fixman (1974) has considered the problem
of determining g’ and shows that

2, B=4,
0 otherwise,

indicating that, for general values of the angles 6, between the rods, the results will
rapidly become too complex to handle.

Further analytic progress is possible in two cases, however: either when the chain
is nearly fully extended (by being immersed, say, in a strong stretching flow; see
§5.3), or when @ — 0 and the conformation is a random walk (Flory 1969). A simple
description of the overall size of the molecule is provided by its r.m.s. end-to-end
vector r, and for a random walk we have

(rD/Nl~ N} as N->oo and Q@-—0.

For non-zero @, the effect of the quantum terms is to introduce additional angular
potentials at each bead (this is most clearly seen in §5). As Flory (1969) notes, as
regards the conformational statistics of a macromolecule, these potentials are equi-
valent to changing the persistence length of the chain, so that a chain of N units of
length I with potentialsis equivalent to a chain of NV units of length I’ without potentials.
For @ — oo, the strong bias in favour of 8 = 0, 7 will mean that the configuration is
approximately that of a one-dimensional random walk; while for ¢ — 0, the trumb-bell
analysis of §§ 4 and 5 indicates a relation of the form

1+0(10-3Q%), Q- 0,
1+0(1/Q), Q- o,
giving (/N1 ~ N-H(Q).

Thus the influence of @ on the equilibrium length of the macromolecule is small,
though its aspect ratio will be greater as @ increases.

v =@t with f@ =1

5. The diffusion problem in the rigid quantized limit
5.1. General case

We now suppose that our (general) system is no longer in thermodynamic equilibrium
because of the fluid forces on it, and we seek to calculate the effective entropic forces
which are attempting to restore it to equilibrium. This may be achieved by a detailed
analysis in phase space (see e.g. Curtiss ef al. 1974), but the time scale for adjustment
of momentum is very short, and so the momentum part of phase space can be assumed
in equilibrium, and a generalization of the Einstein argument will produce the necessary
fluxes.

Hence, given some configuration space probability distribution p(q*), we imagine
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this as a hypothetical equilibrium for the system with some suitably chosen external
potential V(¢*). Then p must satisfy (4.11), and

Vg = —kT'log (p/h)
where h(g*;v,) = g'Yexp[— 443, /ET]/TT (1 —exp (—#v 4 /kT)]. (5.1)
4

Now the generalized force on a particle due to the presence of this potential is
— oV /29#, and thus if the mobility tensor is {~1¢# there is an advective particle flux j
given by o = = g 1etpiTy o
This must be balanced by a diffusive flux, which is therefore kT'¢{=1*%p d(log p/h)/dq*,
and hence we identify the generalized entropic force as — k7T'd(log p/h)/éqP.

It is now a straightforward matter to set up the diffusion equation for the problem.
We follow Kirkwood & Riseman (1948). Probability conservation gives

op . 8,0 1
= st '}ja .
8t+V d=0 ie o giaq (g'4j*) = (5.2)
and J* = pg*. (5.3)

The ‘force’ on the system has been derived as — 8V /éq* — kT d(log p/k)/0q*, where V
represents internal and external potentials, and this must be balanced by a hydro-
dynamic force {, 5(u” —G#), where u/is the appropriate component of the fluid velocity.

Thus ¢ = us— L1V [og? + KT o(log o/ 1)/ g, (5.4)t
and (5.2), (5.3) and (5.4) can be rearranged to give

6p 1 9 . _w_alj _ 3p;

it e (- ) -l <o &9
where the diffusion tensor D = k7T¢1, (5.6)
and V= V—kTlogh.

Hence, the diffusion equation is precisely as we would have expected, except that a
new term — k7' log h must be added to the potential for the system to take account
of the quantum energies of the frozen co-ordinates.

The average particle stress is then given by

G0 = n<s> = nfp(qa) s(qa)dﬂlga’ (57)

where s is the stresslet exerted by one particle on the fluid, and » is the number density
of particles. We now illustrate these general principles by analysing the rheological
properties of a suspension of trumb-bells and of Rouse chains.

1 In fact, in (5.4) we have made the simplest possible assumption about the hydrodynamics.
In general there can be an additional flux in configuration space arising from components of u
outside that space, e.g. for an extensional flow which is trying to ‘ pull apart’ a rigid (modified)
dumb-bell aligned with the principal axis of extension there is no component of u in the con-
figuration (rotation) space of the system. Nevertheless if the ‘ beads’ of the dumb-bell have the
right shape, it may rotate, and thus give a probability flux (see Erpenbeck & Kirkwood in Kirk-
wood 1967).
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5.2. Rheological properties for the trumb-bell model

The mathematical details involved in using these quantum models become complex
very rapidly. Two cases in which analytic progress can be made are weak flows and
potential flows. We examine these in detail.

Weak flows. Earlier workers (e.g. Hassager 1974a) have found that the simplest
available rheological property, the zero shear viscosity, is independent of their various
solutions for the equilibrium probability distribution. We shall reach the same conclu-
sion here. The ‘first’ case where the quantum influence can be demonstrated and which
we can analytically find, then, are the normal-stress-differences (in fact the first, for the
second always vanishes for this type of model), and we can again compare with the
classical result, and that of Hassager (1974 a).

We do not present a detailed analysis for the computation of the stress tensor here.
It is shown by Hassager (1974a) that a more convenient form of (5.7) is

2
o? = 7%—(%(0052 308,68, + 3sin? 108,8,), (5.8)
where the unit vectors §,, 8; define the plane of the trumb-bell as shown in figure 1 (5).
{ is the friction coefficient for the beads, I the length of a rod, and ¢/6t an Oldroyd
derivative given by

] 0
— = _— —_ T -
S()=2()=(VW)7.( )=( ).(Vu).
Now correct to quadratic terms E . E and §E/dt (assumed of the same order) it may
be shown from (5.5) that

p = pl1+1%/2kTE: (cos? 168,58, + 3sin?168,8,)], (5.9)

where p, is the equilibrium probability distribution given by (4.14). Thus, to find the
second-order fluid behaviour, it remains only to substitute (5.9) into the configuration
space averages in (5.8). This gives rise to the retarded motion expansion

57 = — pl + 2b; E — 2b,0E /81 + O(P®), (5.10)

where P is the Péclet number given by (3.3), and it may be shown that the dimension-
less forms for the constants are given by

51 = by/nll? = §(2-J4,/7,),
by = kThy/nltt = 1s(134,/Jy~ 16J,/J,+T) (5.11)

and J, = f " cosn 6p,(0) 6. (5.12)
0

Now in all the cases considered, p, is even in § about }m and hence J; = 0. This gives
rise to the observation above that the zero shear viscosity is given by b, = £ in all
cases. The various values of b, which have been obtained are shown in table 2, and in
graphical form in figure 3. It will be seen that the variation in b, for @ < 1 is very small,
10-3@4, and this indicates that under normal circumstances the quantum effect on the
rheological functions will not be very important. It further strengthens the case that
the additional mathematical problems posed by handling generalized co-ordinates are
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2 a

b, b,
Classical case \ ( §11_76 = 0-0210
Hassager (1974 a) 2 1_018—0 8—;’5—%; = 0-0207
Quantum oase @ >0 0 srs( 1+ T @+ o@)
priierion il FH(1+06"9)

TABLE 2. Zero shear viscometric coefficients for the trumb-bell.

0-05 |-

0-02 |-

1 ‘Tso +3/3
1080 Ir+ 33

(Hassager 1974q)

0-01 T T T T T T
1072 107! 1 10 10? 10° 104

Q

F1cure 3. Variation of the first normal-stress-difference
with @ for a trumb-bell suspension.

not rewarded by attendant improvements in the quality of the answers: quantum
effects are undoubtedly part of the physics of the problem, but seem to have little
effect on the rheology, at any rate for weak flows.

Strong flows. In order to exploit the known solution of the diffusion equation for
potential flows, we consider a steady extensional flow

2
E=F -1 .
-1
It follows (Hassager 1974a) that
p=p.exp[ ¥ rt.E.ri/2D]. (5.13)

beads
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A

ry/2 fe
Weak flow:
2 124 2 34 13
P>0 Q-0 §|:1+——-1575P2+O(Q“)+0(P=*):| §|:l+§IP(1+11475Q4)
+0(Q@%) + O(Pz)]
1 K 1 2 20 1
@ > 5[1+Q_’+0(§):| §|:1+'27P+0(@‘)+O(P2)]
16 2K
x |:1 +EP2(1—Q7)+O(P3)]
K =[n/(3—3)}
Strong flow:
3 1 E
P =2P>0 1 917+.u2(3-¢3)+0(972) 3[1 2T+ 26-43) +O(37' ]

2 = Q/2P arbitrary

TaBLE 3. Asymptotic results for the trumb-bell in extension.

E)

P=2P

Ficure 4. Extensional viscosity for a trumb-bell suspension.

This solution corresponds to a balance between advection and diffusion in (5.5). p, is
the equilibrium solution given by (4.14). Now, referring to figure 1, this may be written

p = p.exp{l?E: [cos® 108,83+ 3sin%}06,8,]/2D}
or, by means of the Euler angle (v, ¢, ) representation of the §,-triad,
P = po(0) exp {$P[cos? 10(3sin ysin? ¢y — 1)+ 3sin? §0(3cos?Yfrsin®y—1)]}, (5.14)

where 0 < ¢ < 27, 0 < ¥y <7, 0 < 0 <7, and the Péclet number & is as defined in
(3.4). The particle stress is given by (5.8), and is most conveniently represented by
an extensional viscosity u, (defined so as to be equal to the shear viscosity for a New-

tonian fluid), thus i, = p,/nli® = &7: E/12nL2E?
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(ny21
-1-0

| 0-6 ]
-3-0 0 30
P=2p

F1oure 5. End-to-end length for a trumb-bell in an extensional flow.

and with our chosen co-ordinate system this becomes
fle = 1% {cos? 30[3sin? y sin?yr + 1]+ 2 sin? }0[3sin? y cos2yr + 1]). (5.15)

An appropriate measure of the size of the macromolecule is the end-to-end length
given by

{ry/2l = {sin 30). (5.16)
These two quantities which may be taken as representative of the rheological influence
and geometry of the molecule may now be obtained by substituting the known form
of p from (5.14) into (5.15) and (5.16) and performing the threefold integrations
numerically. Asymptotic results for small P can be obtained from the previous section,
and for large & by simplifying the integrals. These asymptotes are given in table 3.
It is again seen from the numerical results (figures 4 and 5) that the effects of non-zero
@ are small, and are largest for intermediate flow strengths.

5.3. Rheological properties for the Rouse chain

Weak flow. The technical complexities discussed in § 4.4 bedevil a detailed solution
for general N. For the classical @ = 0 case, a solution for the zero shear viscometric
functions is given (Rallison 1977; Hassager 1974a) by

- ~ 1
by, = #eV?1(Q); by, = WS

N 4f Z(Q)’

where f, ,(0) = 1, and, since it is the overall particle radius which determines its
hydrodynamic influence, it is anticipated that the behaviour of f; , will be much the
same as that of f(Q) discussed in §4.4.

Strong flow. We consider finally a Rouse chain immersed in a strong extensional
flow at sufficiently high Péclet number & that the chain is almost fully extended. As
noted in § 3, when &£ > 1, the appropriate measure of the importance of quantum
mechanics is 2 = ¢/NP. The geometry of this extended structure is most easily
specified by its length measured along the direction of extension, 7,, and its mean
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square displacement perpendicular to that direction at the pth bead, #2. The rheo-
logical influence can be specified by an extensional viscosity as in §5.2. Thus for

# > 1 we have Ao = a(N) + P1a,(2, N) + O(F), (5.17)
{ry/Nl = 1+Z-B(2,N) +0(F-2), (5.18)
/1= P-1c7(2, N)+0(27), (5.19)

and our task is to determine the functions a, b and c”.
Asin the trumb-bell case, we have an exact solution to the diffusion equation,

p=peexp] ¥ ri.E.ri/2D] = p,exp[Il2A~1bi E.b7/2D] (5.20)
beads

where the (V x N) structure matriz A (called g~ by Hassager 1974a) is specified by the
topology of beads and rods. For a Rouse chain,

2, 1=7,
Ai={—-1, ¢=45+1, and A‘”":{
0 otherwise

iN+1—§)/(N+1), @

J»
JN+1-9)/(N+1), j<i

AN/

Now the form of expression for p may be greatly simplified by exploiting the condition
2 > 1. This is discussed in appendix B. We find on the assumption that ¢ < NP
(which is satisfied for typical values of N for a real macromolecule) that (B 6)

p ~ const. (1 + P VM (x; %+ Y, ;) exp {[ 2EN; + Lyy] [x, 2+ y: 931}

where the matrices N, L are defined by (B 5) and (B 2), and «’s and #’s represent the
deviations of the rods from full alignment with the flow direction, multiplied by the
large 2} factor. L;; here corresponds to the flow in (5.20) while each N;; derives from
one of the normal modes in p,. .#" may be determined explicitly, but since it cancels
in the final results, we do not give it here. It is convenient to define R;; = L,;+ 2EZN,,.

With our solution for p it is now a straightforward but tedious matter to evaluate
the quantities of interest. We relegate the mathematical details to appendix C. The
problem is there reduced to the inversion of the N x N matrix R;;. For small N this
may be achieved analytically (for N = 2 the results agree with those given in table 3
for the trumb-bell), but for moderate N a numerical solution is required. For large
N, asymptotic estimates are possible. It is easily seen from (B 2) that, as N — oo,

ZL ~ Pdiag(N,...,r(N+1—-r1),...,N)

and thus the flow induces effects which increase as NP for the ends of the chain (this
is the magnitude of the flow velocity at the fullest extent of the chain and hence the
tension in the end segments), and as N2P for points in the middle {the tension in the
central segments). In addition, as N — oo, ZN,; takes the (tridiagonal) form

1 =4
SN 0
~ ~
~
_y\\
TN~ log N & log ¥ 5 log ¥
Y
~ \_i
0 N
~ ~
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—Nb/(log N +7)

—6a,/N?

' T R i
1072 107! i 10 10?

FIGURE 6. Geometrical and rheological properties for an almost fully extended chain. Numerical
results for N = 10, 30, deviation from full extension. (a) Mean square displacement at the centre.
(b) Mean square displacement at an end. (c) Length measured along principal axis of extension.
(d) Extensional viscosity.

Bo(N) a(2, N) b(2,N) (2, N) ctN(2,N)
6 1 4 log N
FN ——w ) —SegN4N(1-:@) (- 2) N(J—a;@ == )

TABLE 4. Asymptotic results for an almost fully extended chain # — w0, N - 0.
The a, are all order one constants, ¥y = 0-577 Euler’s constant.

Determination of R-1 in this asymptotic limit now shows that the quantum terms
will become significant for displacements of the end segments at 2 = O(1), and for
middle segments when 2 = O(N /log N). The contribution of the particle to the stress
is dominated by the longest mode of deformation, and hence again 2 order unity
measures the importance of quantum effects in the rheology.
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Numerical results for N = 10, 30 are plotted in figure 6. Asymptotic results for
N — oo are given in table 4. At 2 = 0, the numerical results for N = 30 are within
49, of the result given by the asymptotic formula. The shapés of the curves for the
end-to-end length and the extensional viscosity are very similar, supporting the
conclusion that the overall distortion describes the dominant energy-dissipating mode.
Physically plausible values for 2 all lie in the plateau region with 2 < 1, again showing
that quantum effects are small.

6. High frequency behaviour

In the paper so far we have been concerned with either steady states, or with weak
flows whose time variations were assumed comparably slow (second-order-fluid
expansion). We turn briefly in this section to the physics of unsteady motions for weak
flows (linear viscoelasticity), and in particular the limit of infinitely high frequency
(w). The principal motivation for the discussion here is the work of Fixman & Evans
(1976) who, in considering a Rouse chain with fixed bond lengths and with angular
constraints which can be frozen, demonstrate that the limits of infinitely high stiffness
and w— oo may not commute. It may be thought that the quantum-mechanical
analysis presented in the earlier part of this paper would bring together these two
limiting procedures, but, in fact, this is not the case. We shall show that a fundament-
ally different, classical, phenomenon is responsible, and by using an elastic dumb-bell
model (for which we showed in §4.2 that no quantum-mechanical paradoxes arose)
will demonstrate that the two effects are distinct.

6.1. Elastic dumb-bell model

Asin § 4.2 we consider a Hookean elastic dumb-bell of non-zero equilibrium length !
immersed in a weak flow E¢i*t with P € 1. The connector force is x(r — ) when 7 is the
length. There are two non-dimensional parameters characterizing the time evolution
of the structure: the non-dimensional stiffness A% = «xI%/kT'; and the non-dimensional
frequency Q = {l%w/kT. The rheological influence of the particles in the suspension is
most conveniently given for weak flows by a non-dimensional complex. viscosity
2(Q, A?): the ratio of the stress to twice the rate of strain. We shall be concerned to
derive the value of Z in the two double limits Q — 00, A > 00; A—> 00, Q> 0.

Governing equation. If r is the end-to-end vector for the dumb-bell, then we have
as in (5.4) for the equation of motion of the dumb-bell

YE.r—1)=«k(r-1l)r/r+kTVlogp, (6.1)
together with a conservation equation for the probability,
‘ op/at+V .pk =0, (6.2)
and finally for the particle stress, we have
& = —n{((E.Tr—F)r) = —%%(rr). (6.3)

The equilibrium solution for p is then (in non-dimensional form)

p. = const.exp (— §A%(r—1)?) (6.4)
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and hence, for weak flows for which the perturbation to p must be linear in E,

p = p(1+r.E.rg(r;Q,2)/r*+ O(P?),
giving from (6.3) that

= .{.[fmper“‘dr—Lgprcg(r)r‘dr]/jmpcrzdr.
12{Jo 5Jo 0

From (6.2) the function g satisfies
g +2/rg —6/r2g—A%r—1)g’' —iQg = - A%(r—1) (6.5)
with boundary conditions ‘
g=0(? as r—>0, g=o(exp(}A%(r—1)2) as r->oo0.

Now, for large values of A, it is easy to see that only the behaviour of g near = 1
affects Z, in particular,

B~ 112l [g(l)+2A2[69 (1)+@Q$7(1)]]+0(A2)}

and hence by means of a numerical solution for g (given A > 1, Q varying) / is easily
* computed. In addition, we may obtain analytic results for Q < A2, Q > A2, These are

i, i 1 .
E[r “'m+6]+0(ﬁ) for Q<A

A2[(r_1)r+ h(r)+0( )] with h(l)=4 for Q> A2,

1Q (2Q)?
11+:Q/15 5
Tém for Q<A s (6.6)
and hence i~ 22
0 (Q) >0 for Q> A2 (8.7)

The solution (6.6) for Q < A2 can be obtained independently, as might be expected,
by considering a suspension of rigid rods with just two degrees of freedom; this is
merely a particular case of the more general conclusion of Titulaer & Deutch (1975)
and Titulaer (1977) that, for motions at finite frequency, the results for an initially
rigid system (with Lagrange multipliers to handle the constraints) are the same as
those for a springy system in the limit of rigidity. Both (6.6) and (6.7) may also be
checked by means of a numerical solution of (6.5). In figure 7 we show values of 7,
A; (the real and imaginary parts of z) obtained for A? = 50, compared with the rigid
rod value (6.6). It is seen that for small Q the deviation is indeed small, but that, for
larger Q, p, decays more rapidly and falls below the asymptotic value 4 given by
(6.6). The value of u, is slightly higher than that for a rigid rod, but both decay to
zero as  increases.

We see that even when Q > 1, (6.6), corresponding to freezing into rods first gives
rise to the non-zero value ;% unequal to (6.7). We have thus reached the same
conclusion as Fixman & Evans (1976): the stress generated by the dumb-bells
apparently depends on the order in which the limits A -» 00, Q- co are taken.
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FIGURE 7. Real and imaginary parts of the complex viscoeity for a dumb-bell. A? = 50.

Physical explanation. The discrepancy between the two approaches can be seen most
easily by means of (6.1) and (6.3). At high frequency the Brownian term is unimportant
and, in an order of magnitude sense,

C(Br—7%) ~ k(r—1), oocr(Er—r).

Now when the springs are frozen intorods first, 7 = 0,7 = [, and ooc E72.If, on the other
hand, « is large but finite, then at frequencies w sufficiently large compared with «/&,

r—1l~ El/(Gw+k/E)
«/€

and so o ER—>—-50 as w->o.
w+k/
In other words, as w—> 0 the magnitude of variations in length tends to zero as the
rigid rod analysis (correctly) assumes, nevertheless the terms 7 and Er remain com-
parable (and are equal in the limit). Hence, the dumb-bell moves minutely but with
the fluid at leading order and therefore generates no stresses.
10 FLM 93
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F1aure 8. Variation of high frequency limiting viscosity with @ for a trumb-bell.

6.2. Relevance to more complex systems

We have noted that provided Q/A is not too large, the high frequency behaviour is
correctly given by freezing the dumb-bell first. It follows that in systems with anumber
of ‘stiff’ degrees of freedom based on this criterion (which is, of course, independent
of the quantum-mechanical one), the correct high frequency behaviour will be predicted
by freezing those variables while the remainder are left flexible. In fact an example
is the analysis of Fixman & Evans (1976) for a Rouse-Zimm chain. There the rod
lengths are fixed at the outset and it is only the angular degrees of freedom which
are called into question. In consequence, neither of the results for 7 is zero as in the
simple calculation of § 6.1, but the two results differ.

6.3. Influence of quantum effects at high frequency

The discussion above has concerned entirely classical physics. It indicates that at
frequencies low compared with the (quantum) frequencies of oscillation of the rods
in a bead-rod chain, there will be a non-zero complex viscosity. Further, the value of
this viscosity will depend upon the strength @ of quantum effects since, as noted in
§5.1, these introduce effective additional angular potentials. By way of illustration
we give the result for a trumb-bell.

As shown by Fixman & Kovac (1974a) with appropriate change of notation,

i~ E{1/(4—cos20)) as w->o0,

and the average may be taken at thermodynamic equilibrium. (This result is easily
derived on noting that to sufficient accuracy the probability distribution is unchanged
from its equilibrium value; that the diffusion stress vanishes as @ co; and that the
remaining hydrodynamic stress is due to the tensions in the inextensible rods.) The
appropriate equilibrium distribution is given by (4.14) and Z(Q) is then easily obtained
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numerically. The asymptotic result (@ - 0) Z ~ {%log 3 agrees with Fixman & Kovac
(1974a). In figure 8 the variation of this high frequency limiting viscosity with ¢ is
plotted. The variation is small, and only manifests itself for large (> 10) values.

7. Conclusions

We gather here the principal results and conclusions of the paper.

1. The classical statistical mechanics of a system may predict quantitatively
different results when certain components of that system are permitted to become
rigid constraints rather than spring-like connectors (§ 2).

2. A proper treatment of such a system requires quantum mechanics, and the
importance of the quantum nature of the physics may be estimated by a dimensionless
group Q (§3).

3. The inclusion of quantum effects makes the limit of rigidity consistent in the
sense that when @ — 0 the classical results with stiff but flexible connectors are
recovered (§4).

4. For a linear hydrodynamic macromolecular model, the quantum terms may
effectively be replaced by additional potentials hindering the free rotation of adjacent
polymer segments (§ 5).

5. The influence of the quantum terms on the rheology and on the molecular size
appears to be small for both weak and strong flows (§ 5, §6.3).

6. For weak but rapidly varying flows, an entirely separate difficulty arises in con-
nexion with rigid constraints. A classical analysis demonstrates that at sufficiently
high frequency any flexible connector will ultimately move with the applied flow and
80 exert no stresses. A rigid connector, however, will continue to exert forces on the
fluid (§6).

In regard to the determination of flow properties for polymer solutions, which
provides the motivation for this paper, a more general conclusion is in order. The
results for quantum-mechanical systems very rapidly become complex and mathe-
matically intractable. In order that a model be useful it is necessary that it not be too
complicated, though, on the other hand, it should still include the important physics.
We have seen that the quantized nature of the structure can be important (in the
sense that without it the results may not be consistent), but the numerical influence
of the parameter @ on the rheology is small. The compromise strongly suggested then
ig that the self-consistent limit @ — 0 be employed in polymer modelling: in respect
of the thermodynamics rigid constraints must not be used in such a formulation when
internal degrees of freedom remain, but must be replaced by stiff springs; never-
theless the computations are rendered far more tractable without substantial loss of
accuracy.

Appendix A. Thermodynamic equilibrium for a general system

In §4 we considered the equilibrium statistics for a system in which the metric
tensor g9 for the quantum modes is a function of the classical co-ordinates ¢*. For
simplicity, however, the quantum potential V,, was taken as €720 5. In general,
however, we must expect that V, , also varies with the ¢, and the question arises as
to how the conclusions are modified.

10-2
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We note first that for the classical system, with all degrees of freedom present
initially, in the limit ¢ 0 (4.3) is replaced by

p—> const. (g°/det V, g) exp (— §V,,9%9F) IAT d(g4). (4.3)

Of course the classical expression for the case when the ¢4 never appear is unaffected
by the dependence of V,; on ¢*. It follows that the discrepancy between the two
classical approaches is even greater here, for only when

g’ =g°/detV, g

(to within a multiplicative constant) do they agree.
On the other hand, the introduction of quantum mechanics resolves this difficulty
too, for now the eigenfrequencies of vibration v , satisfy

det (%48 — (v3/e*) V) = O, (4.9)
and hence v, = (9°/9’')}/(det V, 5)}.

In consequence, in the limit ¢ — 0, the result (4.3)’ is recovered.

Appendix B. Determination of the probability distribution for a nearly
fully extended chain immersed in a strong flow
Determination of the equilibrium distribution p,. It is convenient to rescale the
included angles 6, between the rods so that
0, =m—-Pty,
and then (4.15) becomes
'}'ﬁzAs B=4 + 1:

Q4B _ AAB . {
g 0 otherwise.

At leading order, the eigenfrequencies of vibration v, (n = M +1, ..., N) are those of
A, and the perturbations can be calculated by means of an eigenmode decomposition
of A. This gives

vn=2sinn/1{1+ sin 2nAsin4nA + ...

1
e 2
4(N + 1)sin2nA v

+ Y% _;8in 2N — 1 2A sin 2V n/\]} ,

where A = 7/2(N + 1). p, is then given by (4.11).

Determination of p. 1t remains to find the potential flow term bt.E.b’, and then p
is given by (5.20). We follow Hassager (1974 a) and choose spherical polar co-ordinates
(7%, ¢%) relative to the principal axis of extension for each b?,

bt = (cos (m —y?), sin (7 —y*) cos ¢, sin (m —y?) sin ¢?),

which again may be simplified on noting that y* < 1. Now choosing local Cartesian

co-ordinates x;, y; with
x; = Plytcos @i, y, = Plyisingt, (B 1)

we obtain bi.E.b//2D = (23 +y+ b+ i+ 2,2+ v, yy),
and so A-Yibt E.b//2D = Ly(2; 2+ YY),
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= {‘N +2)AM, =],

where Ly=+ AN,

7 (B2)

Finally in this representation we note that

¥t = (@ =2+ (Y~ Yia)?
and thus (5.20) gives

p ~ const. (1+P-1 M (x,x;+y,y;)) exp P[2 § Nij(x: 25+ 4, ))
+ Ly, 2+ y, )1/ T1 [1 —exp— 22(2P sin nA + Ny, 2+ y,9))), (B 3)
n

where My (2,24 Y:y;) = § AV (@ — 22 4 (Y50 — ¥:)?] (B4)

and

1 . .
Ny, +y:y,) = m{[(f”z — ;)% + (Y2 — ¥1)%] sin 2nA sin 4nA

+o+[(Zy —2y_1)?+ Yy —Yn_1)?5in 2N — 1nA sin 2NnA]}. (B 5)

Asymptotic forms for p. The exponent in each term of the denominator of (B 3) has
the form —22(2s8innAP+ N,(x,%;+y;y;)) with Ny~ O(1). Thus if 2<1, the
dependence on z and y can be expanded. This is the physically realistic case. In
addition, when @ > 1 the denominator becomes unity. In either case, p has the
particularly simple form

p ~ const. (1+P 1 M y(x; 2, +y,y;)) exp P[R;(%, 25+ Y: Y5)] (B 6)

Appendix C. Evaluation of geometrical and rheological functions for
an almost fully extended Rouse chain

1. Quaniities of interest. We first simplify the forms of the rheological functions when
the chain is almost fully extended.
(a) Extensional viscosity. Asin § 5.2 we have that

B, = A1 (4b} b] + b} b + b} bi)
and so simplifying with our choice of the b* we obtain

B = FeN( +1) (N +2) {1 + PTGz, 2+ y,9)) + O P,

3 —(CN+1)A W, =3,
n _
where T¢ _N(N+1)(N+2){A—1ﬁ, - (Cu
(b) The overall length. Similarly from (5.18) we obtain
(/N = 4+ PTG (2,2, + y,95) + O(P2))
. 1
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(c) The mean square displacement
2/l = PATR (225 +y,9;) + O(P?)

and, by the same technique,
T® = 8,,6;, (nosum). (C3)

2. Lemma on Gaussian tntegrals. The integrals which must be performed to evaluate
the averages in the expressions above are all of Gaussian type as # - co. We therefore
write down an important lemma:

If I(A) is defined by

I(Aﬁ) =f f— (1+A4,x,2;+...)exp[ - PB(x, 2;+ ...)] 1 dx,,

where each expansion is asymptotic as |x|— 0, then
I(AD)/I(A®) = 1+ }P-1BHAP — AP) +O(P2) as P—co.

3. Evaluation of properties. By use of the lemma, the coefficients in the expressions
(5.17-5.19) may now be calculated with the form for p derived as (B 6). These are

ay(N) = geN(N +1) (N +2); a,(2,N) = a(N) R7 T3,
b(2,N) = R7'T{); c®(2,N)=R73T§. (C4)

The problem has thus been reduced to one entirely of matrix algebra: given N and
2, R is determined by (B 7), and the matrices L, N are given by (B 2) and (B 7); R
may be inverted numerically, and the functions a, b, ¢? are then easily determined.
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